P P SAVANI UNIVERSITY

Second Semester of B. Sc. IT Examination May 2019

SSIT1040 Data Structures

14.05.2019, Tuesday

Instructions:

Time: 12:30 p.m. To 3:00 p.m.

Maximum Marks: 60

	Instruction 1. The qu	nestion paper comprises of two sections.	
	2. Section	n I and II must be attempted in separate answer sheets.	
	3. Make s	suitable assumptions and draw neat figures wherever required.	
	4. Use of	scientific calculator is allowed.	
		SECTION - I	
	Q-1	Answer the following (Any Five)	[OF]
	(i)	What is the use of FRONT and REAR in queue?	[05]
	(ii)	What is non primitive data structure?	
	(iii)	What is the difference between row major and column major order?	
	(iv)	What do you mean by PUSH and POP?	
-	(v)	What is bubble sort?	
_	(vi)	Explain non-linear data structure.	
	(vii)	Write prefix expression of the infix expression, using priority as: () > > > > > + > +	
		Expression: ((A * (G * H)) / (C - D) ^ (D / E)) \$ F.	
	Q-2(a)	Write an algorithm for inserting an element in a stack and to return the value of ith element	[05]
		from top of the stack.	11
	Q-2(b)	Write a program to show insertion and deletion operation in a circular queue.	[05]
		OR	
	Q-2(a)	Write algorithm for inserting and deleting an element in stack.	[05]
	Q-2(b)	Consider the stack S with characters as shown below, where S is allocated 12 memory cells.	[05]
		S: H,E,L,L,O,W,O,R,L,D,	
		Describe the stack content at the end of following operations.	
	0.2(a)	pop(), push(H), push(E), pop(), push(L), push (L), pop(), push(O).	
	Q-3(a)	Consider the following arithmetic expression P, written in Postfix notation. Translate it in	[05]
		infix notation and evaluate.	
	0.000	P: 12,7,3,-,/,2,1,5,+,*,+	
_	Q-3(b)	Write a program to generate compact matrix from sparse matrix.	[05]
	1	OR	
	Q-3(a)	Write a program to calculate factorial of a number.	[05]
	Q-3(b)	Write an algorithm to convert an infix expression to prefix expression.	[05]
	Q-4	Attempt any one.	[05]
	(i)	Explain the trace of bubble sort for following data.	
		41,29,70,19,69,55,99,31,92,84	
	(ii)	Write and explain binary search algorithm with an example.	
	0.4	SECTION - II	
	Q-1	Answer the following (Any Five)	[05]
	(i)	Define 2-3 tree.	
	(ii) (iii)	Write a steps to perform preorder traversal on tree.	
	(iv)	Write 'C' structure of Singly linked list. Explain malloc() with its syntax.	
	(v)	Define multi graph.	
	(-)		
		Page 1	063

(vi)	Enlist the applications of linked list.	
(vii)	Define Adjacent nodes.	
Q-2(a)	Explain doubly linked list with an example. Enlist the advantages and drawbacks of doubly	[05]
	linked list.	
Q-2(b)	Write a C program to swap n and n+1 node in singly linked list.	[05]
	OR	
Q-2(a)	Write C program to implement INSERT_FIRST (to insert a node at the first position) and DELETE_FIRST (to delete a node from the first position) operations in circular linked list.	[05]
Q-2(b)	Write a C program to count total number of nodes in singly linked list.	[05]
Q-3(a)	Explain threaded binary tree with an example and state the advantages of it.	[05]
Q-3 (b)	Perform inorder, postorder and preorder traversals for the following Binary Tree.	[05]

Explain how a general tree can be converted to binary tree.

OR

Q-3 (a) Answer the following questions for the graph shown below:

[05]

- 1. What is the outdegree of node B?
- 2. What is the indegree of node E?
- 3. Write down a path from node D to node B.
- 4. Is this graph is a multigraph? Give a reason for your answer.
- 5. What is the total degree of node A?
- Q-3 (b) Write a C program to implement push() and pop() operation of stack with linked [05] implementation.
- Q-4 Attempt any one. [05]
- (i) Create a Binary Search Tree for the following data and do in-order, pre-order and post-order traversal of the tree. Take 33 as root node.
 - 53, 60, 24, 45, 33, 73, 36, 17, 56, 69, 13

(ii) Explain AVL tree with example.
